cs.AI updates on arXiv.org 10月28日 12:14
ZeroFlood:数据高效洪水易损性映射模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ZeroFlood,一种基于地理空间基础模型框架的数据高效洪水易损性映射方法,通过跨模态表示学习填补数据稀缺地区的数据空缺,实现基于基础模型的洪水风险管理的可行性。

arXiv:2510.23364v1 Announce Type: cross Abstract: Flood susceptibility mapping (FSM) is vital for disaster prevention but remains challenging in data-scarce regions where hydrodynamic models require dense geophysical inputs. This work introduces ZeroFlood, a geospatial foundation model framework for data-efficient FSM. The approach fine-tunes Geospatial Foundation Models (GFMs) with Thinking-in-Modality (TiM) reasoning, enabling flood prediction from basic Earth observation data such as Sentinel-1 or Sentinel-2 imagery. Using paired EO and simulated flood maps from data-rich regions, ZeroFlood bridges data availability gaps through cross-modal representation learning. Experiments with TerraMind and Prithvi GFMs show that TiM enhances model robustness, with the TerraMind-Large configuration achieving an F1 score of 67.21. The results demonstrate the feasibility of foundation-model-based FSM as a scalable and data-efficient solution for flood risk management.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

地理空间基础模型 洪水易损性映射 数据高效 跨模态表示学习 洪水风险管理
相关文章