cs.AI updates on arXiv.org 08月11日
Learning Logical Rules using Minimum Message Length
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种贝叶斯归纳逻辑编程方法,通过平衡先验与似然,从噪声数据中学习最小信息长度程序。实验表明,该方法在多个领域(如游戏和药物设计)中优于传统方法,且对数据平衡敏感度低。

arXiv:2508.06230v1 Announce Type: new Abstract: Unifying probabilistic and logical learning is a key challenge in AI. We introduce a Bayesian inductive logic programming approach that learns minimum message length programs from noisy data. Our approach balances hypothesis complexity and data fit through priors, which explicitly favour more general programs, and a likelihood that favours accurate programs. Our experiments on several domains, including game playing and drug design, show that our method significantly outperforms previous methods, notably those that learn minimum description length programs. Our results also show that our approach is data-efficient and insensitive to example balance, including the ability to learn from exclusively positive examples.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

贝叶斯归纳逻辑编程 数据高效 最小信息长度程序 游戏设计 药物设计
相关文章