cs.AI updates on arXiv.org 09月18日
阿拉伯方言识别:高效方法与挑战
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了阿拉伯方言识别中数据高效和参数高效的方法,包括软提示策略和LoRA重参数化,并分析了LLMs在零样本和少样本设置下的方言识别能力。

arXiv:2509.13775v1 Announce Type: cross Abstract: This paper discusses our exploration of different data-efficient and parameter-efficient approaches to Arabic Dialect Identification (ADI). In particular, we investigate various soft-prompting strategies, including prefix-tuning, prompt-tuning, P-tuning, and P-tuning V2, as well as LoRA reparameterizations. For the data-efficient strategy, we analyze hard prompting with zero-shot and few-shot inferences to analyze the dialect identification capabilities of Large Language Models (LLMs). For the parameter-efficient PEFT approaches, we conducted our experiments using Arabic-specific encoder models on several major datasets. We also analyzed the n-shot inferences on open-source decoder-only models, a general multilingual model (Phi-3.5), and an Arabic-specific one(SILMA). We observed that the LLMs generally struggle to differentiate the dialectal nuances in the few-shot or zero-shot setups. The soft-prompted encoder variants perform better, while the LoRA-based fine-tuned models perform best, even surpassing full fine-tuning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

阿拉伯方言识别 数据高效 参数高效 软提示 LLMs
相关文章