cs.AI updates on arXiv.org 09月30日 12:02
绿色学习框架优化STAR-RIS毫米波广播系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于绿色学习(GL)的预编码框架,用于STAR-RIS辅助的毫米波MIMO广播系统,优化环境可持续性,提高频谱效率,降低冗余传输和功耗。

arXiv:2509.06820v1 Announce Type: cross Abstract: In this paper, a green learning (GL)-based precoding framework is proposed for simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-aided millimeter-wave (mmWave) MIMO broadcasting systems. Motivated by the growing emphasis on environmental sustainability in future 6G networks, this work adopts a broadcasting transmission architecture for scenarios where multiple users share identical information, improving spectral efficiency and reducing redundant transmissions and power consumption. Different from conventional optimization methods, such as block coordinate descent (BCD) that require perfect channel state information (CSI) and iterative computation, the proposed GL framework operates directly on received uplink pilot signals without explicit CSI estimation. Unlike deep learning (DL) approaches that require CSI-based labels for training, the proposed GL approach also avoids deep neural networks and backpropagation, leading to a more lightweight design. Although the proposed GL framework is trained with supervision generated by BCD under full CSI, inference is performed in a fully CSI-free manner. The proposed GL integrates subspace approximation with adjusted bias (Saab), relevant feature test (RFT)-based supervised feature selection, and eXtreme gradient boosting (XGBoost)-based decision learning to jointly predict the STAR-RIS coefficients and transmit precoder. Simulation results show that the proposed GL approach achieves competitive spectral efficiency compared to BCD and DL-based models, while reducing floating-point operations (FLOPs) by over four orders of magnitude. These advantages make the proposed GL approach highly suitable for real-time deployment in energy- and hardware-constrained broadcasting scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

绿色学习 STAR-RIS 毫米波广播 频谱效率 预编码
相关文章