cs.AI updates on arXiv.org 10月01日 14:00
RIS辅助多用户下行链路系统优化研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了基于可重构智能表面(RIS)的多用户下行链路系统,旨在通过联合优化发射端预编码和RIS相移矩阵来最大化频谱效率。考虑了RIS反射幅度与相移之间的实际耦合效应,提出了一种基于深度确定性策略梯度(DDPG)的深度强化学习(DRL)框架,并通过仿真验证了其在不同用户分布场景下的优越性。

arXiv:2509.25661v1 Announce Type: cross Abstract: This study considers multiple reconfigurable intelligent surfaces (RISs)-aided multiuser downlink systems with the goal of jointly optimizing the transmitter precoding and RIS phase shift matrix to maximize spectrum efficiency. Unlike prior work that assumed ideal RIS reflectivity, a practical coupling effect is considered between reflecting amplitude and phase shift for the RIS elements. This makes the optimization problem non-convex. To address this challenge, we propose a deep deterministic policy gradient (DDPG)-based deep reinforcement learning (DRL) framework. The proposed model is evaluated under both fixed and random numbers of users in practical mmWave channel settings. Simulation results demonstrate that, despite its complexity, the proposed DDPG approach significantly outperforms optimization-based algorithms and double deep Q-learning, particularly in scenarios with random user distributions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RIS 多用户下行链路 频谱效率 深度强化学习 DDPG
相关文章