cs.AI updates on arXiv.org 18小时前
机器去学习:知识空洞与评估挑战
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨机器去学习技术中知识空洞问题,提出测试框架以评估去学习模型的知识保留情况,揭示标准基准测试的局限性。

arXiv:2511.00030v1 Announce Type: cross Abstract: Machine unlearning has emerged as a prevalent technical solution for selectively removing unwanted knowledge absorbed during pre-training, without requiring full retraining. While recent unlearning techniques can effectively remove undesirable content without severely compromising performance on standard benchmarks, we find that they may inadvertently create ``knowledge holes'' -- unintended losses of benign knowledge that standard benchmarks fail to capture. To probe where unlearned models reveal knowledge holes, we propose a test case generation framework that explores both immediate neighbors of unlearned content and broader areas of potential failures. Our evaluation demonstrates significant hidden costs of unlearning: up to 98.7\% of the test cases yield irrelevant or nonsensical responses from unlearned models, despite being answerable by the pretrained model. These findings necessitate rethinking the conventional approach to evaluating knowledge preservation in unlearning, moving beyond standard, static benchmarks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器去学习 知识空洞 评估挑战 去学习模型 知识保留
相关文章