cs.AI updates on arXiv.org 09月03日
LLMs应用于加速器技术文档知识提取
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了利用大型语言模型(LLMs)从粒子加速器技术文档中自动提取信息的应用,旨在解决知识保留问题,并降低人员退休导致的知识流失风险。

arXiv:2509.02227v1 Announce Type: cross Abstract: The large set of technical documentation of legacy accelerator systems, coupled with the retirement of experienced personnel, underscores the urgent need for efficient methods to preserve and transfer specialized knowledge. This paper explores the application of large language models (LLMs), to automate and enhance the extraction of information from particle accelerator technical documents. By exploiting LLMs, we aim to address the challenges of knowledge retention, enabling the retrieval of domain expertise embedded in legacy documentation. We present initial results of adapting LLMs to this specialized domain. Our evaluation demonstrates the effectiveness of LLMs in extracting, summarizing, and organizing knowledge, significantly reducing the risk of losing valuable insights as personnel retire. Furthermore, we discuss the limitations of current LLMs, such as interpretability and handling of rare domain-specific terms, and propose strategies for improvement. This work highlights the potential of LLMs to play a pivotal role in preserving institutional knowledge and ensuring continuity in highly specialized fields.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 粒子加速器 知识提取 知识保留 技术文档
相关文章