cs.AI updates on arXiv.org 11月03日 13:19
通用时间序列模型在EEG信号处理中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了将通用时间序列分类基础模型应用于EEG信号处理,如运动想象分类和睡眠阶段预测。实验结果表明,该模型在EEG信号处理中具有强大的性能,优于现有模型。

arXiv:2510.27522v1 Announce Type: cross Abstract: Foundation models for time series are emerging as powerful general-purpose backbones, yet their potential for domain-specific biomedical signals such as electroencephalography (EEG) remains rather unexplored. In this work, we investigate the applicability a recently proposed time series classification foundation model, to a different EEG tasks such as motor imagery classification and sleep stage prediction. We test two pretraining regimes: (a) pretraining on heterogeneous real-world time series from multiple domains, and (b) pretraining on purely synthetic data. We find that both variants yield strong performance, consistently outperforming EEGNet, a widely used convolutional baseline, and CBraMod, the most recent EEG-specific foundation model. These results suggest that generalist time series foundation models, even when pretrained on data of non-neural origin or on synthetic signals, can transfer effectively to EEG. Our findings highlight the promise of leveraging cross-domain pretrained models for brain signal analysis, suggesting that EEG may benefit from advances in the broader time series literature.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列模型 EEG信号处理 运动想象分类 睡眠阶段预测
相关文章