cs.AI updates on arXiv.org 09月26日 12:22
无损压缩评估时间序列模型新范式
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出无损压缩作为评估时间序列模型的新方法,基于香农源编码定理,建立压缩长度与负对数似然之间的直接等价关系,定义标准化评估协议和指标,并开源了综合评估框架TSCom-Bench,实验表明压缩揭示了传统基准测试中未注意到的分布弱点。

arXiv:2509.21002v1 Announce Type: cross Abstract: The evaluation of time series models has traditionally focused on four canonical tasks: forecasting, imputation, anomaly detection, and classification. While these tasks have driven significant progress, they primarily assess task-specific performance and do not rigorously measure whether a model captures the full generative distribution of the data. We introduce lossless compression as a new paradigm for evaluating time series models, grounded in Shannon's source coding theorem. This perspective establishes a direct equivalence between optimal compression length and the negative log-likelihood, providing a strict and unified information-theoretic criterion for modeling capacity. Then We define a standardized evaluation protocol and metrics. We further propose and open-source a comprehensive evaluation framework TSCom-Bench, which enables the rapid adaptation of time series models as backbones for lossless compression. Experiments across diverse datasets on state-of-the-art models, including TimeXer, iTransformer, and PatchTST, demonstrate that compression reveals distributional weaknesses overlooked by classic benchmarks. These findings position lossless compression as a principled task that complements and extends existing evaluation for time series modeling.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列模型 无损压缩 信息理论 评估框架 TSCom-Bench
相关文章