cs.AI updates on arXiv.org 10月28日 12:14
Hilbert空间中度量与偏好学习新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种在Hilbert空间中解决度量与偏好学习问题的数学框架,包含新的表示定理,并应用于非线性算法,实际数据集测试表现优异。

arXiv:2304.03720v2 Announce Type: replace-cross Abstract: We develop a mathematical framework to address a broad class of metric and preference learning problems within a Hilbert space. We obtain a novel representer theorem for the simultaneous task of metric and preference learning. Our key observation is that the representer theorem for this task can be derived by regularizing the problem with respect to the norm inherent in the task structure. For the general task of metric learning, our framework leads to a simple and self-contained representer theorem and offers new geometric insights into the derivation of representer theorems for this task. In the case of Reproducing Kernel Hilbert Spaces (RKHSs), we illustrate how our representer theorem can be used to express the solution of the learning problems in terms of finite kernel terms similar to classical representer theorems. Lastly, our representer theorem leads to a novel nonlinear algorithm for metric and preference learning. We compare our algorithm against challenging baseline methods on real-world rank inference benchmarks, where it achieves competitive performance. Notably, our approach significantly outperforms vanilla ideal point methods and surpasses strong baselines across multiple datasets. Code available at: https://github.com/PeymanMorteza/Metric-Preference-Learning-RKHS

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

度量学习 偏好学习 Hilbert空间 非线性算法 表示定理
相关文章