cs.AI updates on arXiv.org 09月12日
量子模型在组合泛化任务上的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨量子模型在组合泛化任务上的应用,通过Hilbert空间解释组合张量模型表示,并训练变分量子电路学习图像描述任务中的表示,实验结果表明,量子模型在组合泛化任务上具有潜力。

arXiv:2509.09541v1 Announce Type: new Abstract: Compositional generalization is a key facet of human cognition, but lacking in current AI tools such as vision-language models. Previous work examined whether a compositional tensor-based sentence semantics can overcome the challenge, but led to negative results. We conjecture that the increased training efficiency of quantum models will improve performance in these tasks. We interpret the representations of compositional tensor-based models in Hilbert spaces and train Variational Quantum Circuits to learn these representations on an image captioning task requiring compositional generalization. We used two image encoding techniques: a multi-hot encoding (MHE) on binary image vectors and an angle/amplitude encoding on image vectors taken from the vision-language model CLIP. We achieve good proof-of-concept results using noisy MHE encodings. Performance on CLIP image vectors was more mixed, but still outperformed classical compositional models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子模型 组合泛化 图像描述 Hilbert空间 变分量子电路
相关文章