cs.AI updates on arXiv.org 10月27日 14:23
GSL:机器人操作中层次化技能学习新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为GSL的层次化技能学习框架,通过以物体为中心的技能作为接口,提高了机器人在操作中的政策泛化能力和样本效率。

arXiv:2510.21121v1 Announce Type: cross Abstract: We present Generalizable Hierarchical Skill Learning (GSL), a novel framework for hierarchical policy learning that significantly improves policy generalization and sample efficiency in robot manipulation. One core idea of GSL is to use object-centric skills as an interface that bridges the high-level vision-language model and the low-level visual-motor policy. Specifically, GSL decomposes demonstrations into transferable and object-canonicalized skill primitives using foundation models, ensuring efficient low-level skill learning in the object frame. At test time, the skill-object pairs predicted by the high-level agent are fed to the low-level module, where the inferred canonical actions are mapped back to the world frame for execution. This structured yet flexible design leads to substantial improvements in sample efficiency and generalization of our method across unseen spatial arrangements, object appearances, and task compositions. In simulation, GSL trained with only 3 demonstrations per task outperforms baselines trained with 30 times more data by 15.5 percent on unseen tasks. In real-world experiments, GSL also surpasses the baseline trained with 10 times more data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GSL 层次化技能学习 机器人操作 政策泛化 样本效率
相关文章