cs.AI updates on arXiv.org 10月27日 14:22
MeDyate:内存约束下动态子网络自适应框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MeDyate框架,针对设备上神经网络训练的内存限制问题,通过引入LaRa和动态通道采样策略,实现内存约束下的动态子网络自适应,在大量任务和架构上达到最先进的性能。

arXiv:2510.20979v1 Announce Type: cross Abstract: On-device neural network training faces critical memory constraints that limit the adaptation of pre-trained models to downstream tasks. We present MeDyate, a theoretically-grounded framework for memory-constrained dynamic subnetwork adaptation. Our approach introduces two key innovations: LaRa (Layer Ranking), an improved layer importance metric that enables principled layer pre-selection, and a dynamic channel sampling strategy that exploits the temporal stability of channel importance distributions during fine-tuning. MeDyate dynamically resamples channels between epochs according to importance-weighted probabilities, ensuring comprehensive parameter space exploration while respecting strict memory budgets. Extensive evaluation across a large panel of tasks and architectures demonstrates that MeDyate achieves state-of-the-art performance under extreme memory constraints, consistently outperforming existing static and dynamic approaches while maintaining high computational efficiency. Our method represents a significant step towards enabling efficient on-device learning by demonstrating effective fine-tuning with memory budgets as low as a few hundred kB of RAM.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络训练 内存约束 动态子网络自适应 LaRa 通道采样
相关文章