cs.AI updates on arXiv.org 08月20日
GRAFT: Gradient-Aware Fast MaxVol Technique for Dynamic Data Sampling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍GRAFT,一种在训练过程中降低计算和环境影响的方法,通过低秩特征表示、快速最大体积采样器和动态调整子集大小,实现高效节能的神经网络训练,并在多个基准测试中展现出优异的性能。

arXiv:2508.13653v1 Announce Type: cross Abstract: Training modern neural networks on large datasets is computationally and environmentally costly. We introduce GRAFT, a scalable in-training subset selection method that (i) extracts a low-rank feature representation for each batch, (ii) applies a Fast MaxVol sampler to select a small, diverse subset that spans the batch's dominant subspace, and (iii) dynamically adjusts the subset size using a gradient-approximation criterion. By operating in low-rank subspaces and training on carefully chosen examples instead of full batches, GRAFT preserves the training trajectory while reducing wall-clock time, energy consumption, and $\mathrm{CO}_2$ emissions. Across multiple benchmarks, GRAFT matches or exceeds recent selection baselines in both accuracy and efficiency, providing a favorable trade-off between accuracy, efficiency, and emissions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络训练 高效节能 GRAFT方法 低秩特征 子集选择
相关文章