cs.AI updates on arXiv.org 10月24日 12:26
机器人记忆能力提升研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种层次化策略框架,旨在赋予机器人与人类相似的长期记忆能力。通过选择和跟踪关键帧,实现高效的长周期推理,并在实际机器人操作任务中表现优异。

arXiv:2510.20328v1 Announce Type: cross Abstract: Humans routinely rely on memory to perform tasks, yet most robot policies lack this capability; our goal is to endow robot policies with the same ability. Naively conditioning on long observation histories is computationally expensive and brittle under covariate shift, while indiscriminate subsampling of history leads to irrelevant or redundant information. We propose a hierarchical policy framework, where the high-level policy is trained to select and track previous relevant keyframes from its experience. The high-level policy uses selected keyframes and the most recent frames when generating text instructions for a low-level policy to execute. This design is compatible with existing vision-language-action (VLA) models and enables the system to efficiently reason over long-horizon dependencies. In our experiments, we finetune Qwen2.5-VL-7B-Instruct and $\pi_{0.5}$ as the high-level and low-level policies respectively, using demonstrations supplemented with minimal language annotations. Our approach, MemER, outperforms prior methods on three real-world long-horizon robotic manipulation tasks that require minutes of memory. Videos and code can be found at https://jen-pan.github.io/memer/.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器人记忆 层次化策略 长周期推理 机器人操作 记忆能力
相关文章