cs.AI updates on arXiv.org 10月24日 12:24
QKCV注意力模型提升时间序列预测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出QKCV注意力机制,扩展传统QKV框架,融入静态类别嵌入以强调类别信息,提高时间序列预测模型在不同数据集上的预测准确率,并降低计算成本。

arXiv:2510.20222v1 Announce Type: cross Abstract: In real-world time series forecasting tasks, category information plays a pivotal role in capturing inherent data patterns. This paper introduces QKCV (Query-Key-Category-Value) attention, an extension of the traditional QKV framework that incorporates a static categorical embedding C to emphasize category-specific information. As a versatile plug-in module, QKCV enhances the forecasting accuracy of attention-based models (e.g., Vanilla Transformer, Informer, PatchTST, TFT) across diverse real-world datasets. Furthermore, QKCV demonstrates remarkable adaptability in fine-tuning univariate time series foundation model by solely updating the static embedding C while preserving pretrained weights, thereby reducing computational overhead and achieving superior fine-tuning performance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列预测 QKCV注意力 类别信息 预测模型 计算优化
相关文章