cs.AI updates on arXiv.org 10月21日 12:28
RESample:提升VLA模型鲁棒性的OOD数据增强框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为RESample的自动OOD数据增强框架,通过探索性采样来提升视觉语言动作模型(VLA)在复杂机器人操作任务中的鲁棒性。该框架利用离线强化学习获取动作值网络,并从轨迹中采样潜在OOD状态,通过自适应机制将这些动作代理纳入训练数据集,从而增强VLA模型对分布变化的适应性。

arXiv:2510.17640v1 Announce Type: cross Abstract: Vision-Language-Action models (VLAs) have demonstrated remarkable performance on complex robotic manipulation tasks through imitation learning. However, existing imitation learning datasets contain only successful trajectories and lack failure or recovery data, especially for out-of-distribution (OOD) states where the robot deviates from the main policy due to minor perturbations or errors, leading VLA models to struggle with states deviating from the training distribution. To this end, we propose an automated OOD data augmentation framework named RESample through exploratory sampling. Specifically, we first leverage offline reinforcement learning to obtain an action-value network that accurately identifies sub-optimal actions under the current manipulation policy. We further sample potential OOD states from trajectories via rollout, and design an exploratory sampling mechanism that adaptively incorporates these action proxies into the training dataset to ensure efficiency. Subsequently, our framework explicitly encourages the VLAs to recover from OOD states and enhances their robustness against distributional shifts. We conduct extensive experiments on the LIBERO benchmark as well as real-world robotic manipulation tasks, demonstrating that RESample consistently improves the stability and generalization ability of VLA models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据增强 视觉语言动作模型 鲁棒性 OOD状态 机器人操作
相关文章