cs.AI updates on arXiv.org 10月21日 12:12
LaGAT:高效解决密集多智能体路径规划问题
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为LaGAT的混合框架,通过将MAGAT学习启发式与图注意力神经策略结合到LaCAM搜索算法中,有效解决密集多智能体路径规划问题。实验结果表明,LaGAT在密集场景下优于纯搜索和纯学习的方法。

arXiv:2510.17382v1 Announce Type: new Abstract: Finding near-optimal solutions for dense multi-agent pathfinding (MAPF) problems in real-time remains challenging even for state-of-the-art planners. To this end, we develop a hybrid framework that integrates a learned heuristic derived from MAGAT, a neural MAPF policy with a graph attention scheme, into a leading search-based algorithm, LaCAM. While prior work has explored learning-guided search in MAPF, such methods have historically underperformed. In contrast, our approach, termed LaGAT, outperforms both purely search-based and purely learning-based methods in dense scenarios. This is achieved through an enhanced MAGAT architecture, a pre-train-then-fine-tune strategy on maps of interest, and a deadlock detection scheme to account for imperfect neural guidance. Our results demonstrate that, when carefully designed, hybrid search offers a powerful solution for tightly coupled, challenging multi-agent coordination problems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多智能体路径规划 LaGAT MAGAT LaCAM 图注意力
相关文章