cs.AI updates on arXiv.org 10月20日 12:13
水下开放词汇实例分割:MARIS基准与框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MARIS基准,针对水下开放词汇实例分割问题,提出统一框架,包含几何先验增强模块和语义对齐注入机制,以解决水下场景视觉降级和语义错位问题。

arXiv:2510.15398v1 Announce Type: cross Abstract: Most existing underwater instance segmentation approaches are constrained by close-vocabulary prediction, limiting their ability to recognize novel marine categories. To support evaluation, we introduce \textbf{MARIS} (\underline{Mar}ine Open-Vocabulary \underline{I}nstance \underline{S}egmentation), the first large-scale fine-grained benchmark for underwater Open-Vocabulary (OV) segmentation, featuring a limited set of seen categories and diverse unseen categories. Although OV segmentation has shown promise on natural images, our analysis reveals that transfer to underwater scenes suffers from severe visual degradation (e.g., color attenuation) and semantic misalignment caused by lack underwater class definitions. To address these issues, we propose a unified framework with two complementary components. The Geometric Prior Enhancement Module (\textbf{GPEM}) leverages stable part-level and structural cues to maintain object consistency under degraded visual conditions. The Semantic Alignment Injection Mechanism (\textbf{SAIM}) enriches language embeddings with domain-specific priors, mitigating semantic ambiguity and improving recognition of unseen categories. Experiments show that our framework consistently outperforms existing OV baselines both In-Domain and Cross-Domain setting on MARIS, establishing a strong foundation for future underwater perception research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

水下分割 开放词汇 实例分割 MARIS基准 视觉降级
相关文章