cs.AI updates on arXiv.org 10月17日
文化遗产监测:多模态架构预测退化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种轻量级多模态架构,融合传感器数据与视觉图像,预测文化遗产退化程度。该架构采用PerceiverIO,并引入简化编码器和自适应Barlow Twins损失函数,提高监测准确性。

arXiv:2510.14136v1 Announce Type: new Abstract: Cultural heritage sites face accelerating degradation due to climate change, yet tradi- tional monitoring relies on unimodal analysis (visual inspection or environmental sen- sors alone) that fails to capture the complex interplay between environmental stres- sors and material deterioration. We propose a lightweight multimodal architecture that fuses sensor data (temperature, humidity) with visual imagery to predict degradation severity at heritage sites. Our approach adapts PerceiverIO with two key innovations: (1) simplified encoders (64D latent space) that prevent overfitting on small datasets (n=37 training samples), and (2) Adaptive Barlow Twins loss that encourages modality complementarity rather than redundancy. On data from Strasbourg Cathedral, our model achieves 76.9% accu- racy, a 43% improvement over standard multimodal architectures (VisualBERT, Trans- former) and 25% over vanilla PerceiverIO. Ablation studies reveal that sensor-only achieves 61.5% while image-only reaches 46.2%, confirming successful multimodal synergy. A systematic hyperparameter study identifies an optimal moderate correlation target ({\tau} =0.3) that balances align- ment and complementarity, achieving 69.2% accuracy compared to other {\tau} values ({\tau} =0.1/0.5/0.7: 53.8%, {\tau} =0.9: 61.5%). This work demonstrates that architectural sim- plicity combined with contrastive regularization enables effective multimodal learning in data-scarce heritage monitoring contexts, providing a foundation for AI-driven con- servation decision support systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

文化遗产监测 多模态架构 退化预测
相关文章