cs.AI updates on arXiv.org 10月15日 12:58
医疗早期时间序列分类新框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对医疗早期时间序列分类的DE3S框架,通过综合双增强策略、软形状稀疏化机制以及双路径MoE和Inception模块融合架构,显著提高了分类精度和早预测能力。

arXiv:2510.12214v1 Announce Type: cross Abstract: Early time-series classification (ETSC) in medical applications is crucial for time-sensitive scenarios such as sepsis prediction in intensive care units (ICUs), where a large number of deaths are caused by delayed prediction. ETSC can significantly improve ICU resource utilization efficiency and healthcare precision. However, it faces conflicting goals of accuracy and earliness, with existing methods often trading one for the other, struggling to capture subtle early-stage patterns due to weak initial signals and class imbalance. The key to solve these challenges is to find shapelets, which are discriminative subsequences (or shapes) with high interpretability in time-series classification. This paper proposes Dual-Enhanced Soft-Sparse-Shape Learning for Medical Early Time-Series Classification (DE3S), which introduces a novel Dual-Enhanced Soft-Shape Learning framework to figure out shapelets precisely through three innovations: (1) a comprehensive dual-enhancement strategy combines traditional temporal augmentation with attention-based global temporal enhancement for robust representation learning, (2) an attention-score-based soft shapelet sparsification mechanism dynamically preserves discriminative patterns while aggregating less important shapelets into representative tokens, and (3) a dual-path Mixture of Experts Network (MoE) and Inception modules fusion architecture where MoE performs local learning within shapelets and multi-scale Inception modules capture global patterns across shapelets. The framework employs weighted cross-entropy loss for class imbalance handling and demonstrates robustness on subject-consistency datasets. Extensive experiments on six real-world medical datasets show state-of-the-art performance, with ablation studies confirming component efficacy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列分类 医疗早期预测 DE3S框架 双增强策略 MoE和Inception模块
相关文章