cs.AI updates on arXiv.org 10月14日 12:20
ManiAgent:提升VLA模型复杂任务处理能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ManiAgent,一种用于通用操作任务的代理架构,通过任务描述和环境输入实现端到端输出。该架构通过多智能体间的通信进行环境感知、子任务分解和动作生成,有效处理复杂操作场景。实验显示,ManiAgent在SimplerEnv基准测试中成功率高达86.8%,在真实世界的拾取和放置任务中达到95.8%,有效提升了VLA模型性能。

arXiv:2510.11660v1 Announce Type: cross Abstract: While Vision-Language-Action (VLA) models have demonstrated impressive capabilities in robotic manipulation, their performance in complex reasoning and long-horizon task planning is limited by data scarcity and model capacity. To address this, we introduce ManiAgent, an agentic architecture for general manipulation tasks that achieves end-to-end output from task descriptions and environmental inputs to robotic manipulation actions. In this framework, multiple agents involve inter-agent communication to perform environmental perception, sub-task decomposition and action generation, enabling efficient handling of complex manipulation scenarios. Evaluations show ManiAgent achieves an 86.8% success rate on the SimplerEnv benchmark and 95.8% on real-world pick-and-place tasks, enabling efficient data collection that yields VLA models with performance comparable to those trained on human-annotated datasets.The project webpage is available at https://yi-yang929.github.io/ManiAgent/.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

VLA模型 复杂任务处理 智能体架构 机器人操作 端到端学习
相关文章