cs.AI updates on arXiv.org 10月10日 12:21
Barycentric神经网络:高效连续函数逼近新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Barycentric神经网络(BNN)的新型神经网络架构,通过固定基点和相关重心坐标编码结构和参数,实现连续分段线性函数的精确表示。在低资源场景下,提出长度加权持久熵(LWPE)以优化基点,实验结果显示该方法在逼近性能上优于标准损失函数。

arXiv:2509.06694v3 Announce Type: replace-cross Abstract: While artificial neural networks are known as universal approximators for continuous functions, many modern approaches rely on overparameterized architectures with high computational cost. In this work, we introduce the Barycentric Neural Network (BNN): a compact shallow architecture that encodes both structure and parameters through a fixed set of base points and their associated barycentric coordinates. We show that the BNN enables the exact representation of continuous piecewise linear functions (CPLFs), ensuring strict continuity across segments. Given that any continuous function on a compact domain can be uniformly approximated by CPLFs, the BNN emerges as a flexible and interpretable tool for function approximation. To enhance geometric fidelity in low-resource scenarios, such as those with few base points to create BNNs or limited training epochs, we propose length-weighted persistent entropy (LWPE): a stable variant of persistent entropy. Our approach integrates the BNN with a loss function based on LWPE to optimize the base points that define the BNN, rather than its internal parameters. Experimental results show that our approach achieves superior and faster approximation performance compared to standard losses (MSE, RMSE, MAE and LogCosh), offering a computationally sustainable alternative for function approximation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Barycentric神经网络 连续函数逼近 低资源场景 长度加权持久熵 神经网络架构
相关文章