cs.AI updates on arXiv.org 07月10日
Theme-Explanation Structure for Table Summarization using Large Language Models: A Case Study on Korean Tabular Data
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种基于主题-解释结构的表格摘要方法Tabular-TX,旨在生成易于理解的韩文行政文档表格摘要。通过深度理解表格信息并采用记者角色提示策略,该方法提高了摘要的可读性,同时无需大量标注数据和计算资源。

arXiv:2501.10487v3 Announce Type: replace-cross Abstract: Tables are a primary medium for conveying critical information in administrative domains, yet their complexity hinders utilization by Large Language Models (LLMs). This paper introduces the Theme-Explanation Structure-based Table Summarization (Tabular-TX) pipeline, a novel approach designed to generate highly interpretable summaries from tabular data, with a specific focus on Korean administrative documents. Current table summarization methods often neglect the crucial aspect of human-friendly output. Tabular-TX addresses this by first employing a multi-step reasoning process to ensure deep table comprehension by LLMs, followed by a journalist persona prompting strategy for clear sentence generation. Crucially, it then structures the output into a Theme Part (an adverbial phrase) and an Explanation Part (a predicative clause), significantly enhancing readability. Our approach leverages in-context learning, obviating the need for extensive fine-tuning and associated labeled data or computational resources. Experimental results show that Tabular-TX effectively processes complex table structures and metadata, offering a robust and efficient solution for generating human-centric table summaries, especially in low-resource scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

表格摘要 主题-解释结构 韩文行政文档 低资源场景
相关文章