cs.AI updates on arXiv.org 10月06日
MM-LLM在OCT图像质量评估及青光眼诊断中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种可解释的多模态大型语言模型(MM-LLM),用于筛选OCT图像质量并生成包含青光眼诊断和视网膜神经纤维层(RNFL)薄化评估的临床报告。通过在OCT图像数据上训练,该模型在图像质量评估、青光眼检测和RNFL薄化分类上均取得了高精度。

arXiv:2510.02403v1 Announce Type: cross Abstract: Objective: To develop an explainable multimodal large language model (MM-LLM) that (1) screens optic nerve head (ONH) OCT circle scans for quality and (2) generates structured clinical reports that include glaucoma diagnosis and sector-wise retinal nerve fiber layer (RNFL) thinning assessments. Design: Retrospective cohort study of 1,310 subjects contributing 43,849 Spectralis ONH OCT circle scans (1,331 glaucomatous and 867 healthy eyes) from the DIGS and ADAGES cohorts. Methods: A MM-LLM (Llama 3.2 Vision-Instruct model) was fine-tuned to generate clinical descriptions of OCT imaging data. Training data included paired OCT images and automatically generated, structured clinical reports that described global and sectoral RNFL thinning. Poor-quality scans were labeled as unusable and paired with a fixed refusal statement. The model was evaluated on a held-out test set for three tasks: quality assessment, glaucoma detection, and RNFL thinning classification across seven anatomical sectors. Evaluation metrics included accuracy, sensitivity, specificity, precision, and F1-score. Model description quality was also evaluated using standard text evaluation metrics. Results: The model achieved 0.90 accuracy and 0.98 specificity for quality triage. For glaucoma detection, accuracy was 0.86 (sensitivity 0.91, specificity 0.73, F1-score 0.91). RNFL thinning prediction accuracy ranged from 0.83 to 0.94, with highest performance in global and temporal sectors. Text generation scores showed strong alignment with reference reports (BLEU: 0.82; ROUGE-1: 0.94; ROUGE-2: 0.87; ROUGE-L: 0.92; BERTScore-F1: 0.99). Conclusions: The fine-tuned MM-LLM generated accurate clinical descriptions based on OCT imaging. The model achieved high accuracy in identifying image quality issues and detecting glaucoma. The model also provided sectoral descriptions of RNFL thinning to help support clinical OCT evaluation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MM-LLM OCT图像 青光眼诊断 图像质量评估 视网膜神经纤维层
相关文章