cs.AI updates on arXiv.org 11小时前
深度学习优化OCT图像质量研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文评估了深度学习模型在提高玻璃体光学相干断层扫描(OCT)图像质量和缩短采集时间方面的效果。研究发现,条件去噪扩散概率模型(cDDPM)在图像质量指标和视觉图灵测试中表现优异,具有临床应用潜力。

arXiv:2511.00881v2 Announce Type: cross Abstract: Purpose: To evaluate deep learning (DL) models for enhancing vitreous optical coherence tomography (OCT) image quality and reducing acquisition time. Methods: Conditional Denoising Diffusion Probabilistic Models (cDDPMs), Brownian Bridge Diffusion Models (BBDMs), U-Net, Pix2Pix, and Vector-Quantised Generative Adversarial Network (VQ-GAN) were used to generate high-quality spectral-domain (SD) vitreous OCT images. Inputs were SD ART10 images, and outputs were compared to pseudoART100 images obtained by averaging ten ART10 images per eye location. Model performance was assessed using image quality metrics and Visual Turing Tests, where ophthalmologists ranked generated images and evaluated anatomical fidelity. The best model's performance was further tested within the manually segmented vitreous on newly acquired data. Results: U-Net achieved the highest Peak Signal-to-Noise Ratio (PSNR: 30.230) and Structural Similarity Index Measure (SSIM: 0.820), followed by cDDPM. For Learned Perceptual Image Patch Similarity (LPIPS), Pix2Pix (0.697) and cDDPM (0.753) performed best. In the first Visual Turing Test, cDDPM ranked highest (3.07); in the second (best model only), cDDPM achieved a 32.9% fool rate and 85.7% anatomical preservation. On newly acquired data, cDDPM generated vitreous regions more similar in PSNR to the ART100 reference than true ART1 or ART10 B-scans and achieved higher PSNR on whole images when conditioned on ART1 than ART10. Conclusions: Results reveal discrepancies between quantitative metrics and clinical evaluation, highlighting the need for combined assessment. cDDPM showed strong potential for generating clinically meaningful vitreous OCT images while reducing acquisition time fourfold. Translational Relevance: cDDPMs show promise for clinical integration, supporting faster, higher-quality vitreous imaging. Dataset and code will be made publicly available.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 OCT图像 cDDPM 图像质量 临床应用
相关文章