arXiv:2511.00881v2 Announce Type: cross Abstract: Purpose: To evaluate deep learning (DL) models for enhancing vitreous optical coherence tomography (OCT) image quality and reducing acquisition time. Methods: Conditional Denoising Diffusion Probabilistic Models (cDDPMs), Brownian Bridge Diffusion Models (BBDMs), U-Net, Pix2Pix, and Vector-Quantised Generative Adversarial Network (VQ-GAN) were used to generate high-quality spectral-domain (SD) vitreous OCT images. Inputs were SD ART10 images, and outputs were compared to pseudoART100 images obtained by averaging ten ART10 images per eye location. Model performance was assessed using image quality metrics and Visual Turing Tests, where ophthalmologists ranked generated images and evaluated anatomical fidelity. The best model's performance was further tested within the manually segmented vitreous on newly acquired data. Results: U-Net achieved the highest Peak Signal-to-Noise Ratio (PSNR: 30.230) and Structural Similarity Index Measure (SSIM: 0.820), followed by cDDPM. For Learned Perceptual Image Patch Similarity (LPIPS), Pix2Pix (0.697) and cDDPM (0.753) performed best. In the first Visual Turing Test, cDDPM ranked highest (3.07); in the second (best model only), cDDPM achieved a 32.9% fool rate and 85.7% anatomical preservation. On newly acquired data, cDDPM generated vitreous regions more similar in PSNR to the ART100 reference than true ART1 or ART10 B-scans and achieved higher PSNR on whole images when conditioned on ART1 than ART10. Conclusions: Results reveal discrepancies between quantitative metrics and clinical evaluation, highlighting the need for combined assessment. cDDPM showed strong potential for generating clinically meaningful vitreous OCT images while reducing acquisition time fourfold. Translational Relevance: cDDPMs show promise for clinical integration, supporting faster, higher-quality vitreous imaging. Dataset and code will be made publicly available.
