cs.AI updates on arXiv.org 10月02日
RoboPilot:机器人操作中的自适应推理框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出RoboPilot,一种支持复杂任务自适应推理的机器人操作双思考闭环框架,通过引入反馈机制实现动态调整和错误恢复,有效提升机器人操作的鲁棒性。

arXiv:2510.00154v1 Announce Type: cross Abstract: Despite rapid progress in autonomous robotics, executing complex or long-horizon tasks remains a fundamental challenge. Most current approaches follow an open-loop paradigm with limited reasoning and no feedback, resulting in poor robustness to environmental changes and severe error accumulation. We present RoboPilot, a dual-thinking closed-loop framework for robotic manipulation that supports adaptive reasoning for complex tasks in real-world dynamic environments. RoboPilot leverages primitive actions for structured task planning and flexible action generation, while introducing feedback to enable replanning from dynamic changes and execution errors. Chain-of-Thought reasoning further enhances high-level task planning and guides low-level action generation. The system dynamically switches between fast and slow thinking to balance efficiency and accuracy. To systematically evaluate the robustness of RoboPilot in diverse robot manipulation scenarios, we introduce RoboPilot-Bench, a benchmark spanning 21 tasks across 10 categories, including infeasible-task recognition and failure recovery. Experiments show that RoboPilot outperforms state-of-the-art baselines by 25.9\% in task success rate, and the real-world deployment on an industrial robot further demonstrates its robustness in real-world settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器人操作 自适应推理 鲁棒性 闭环框架 动态环境
相关文章