cs.AI updates on arXiv.org 09月30日
实时动态手势识别管道研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于OpenPose关键点估计、关键点归一化和循环神经网络分类器的动态手臂手势实时识别管道。通过实验验证了该管道在自定义交通控制手势数据集上具有较高的识别准确率。

arXiv:2509.25042v1 Announce Type: cross Abstract: This paper presents a real-time pipeline for dynamic arm gesture recognition based on OpenPose keypoint estimation, keypoint normalization, and a recurrent neural network classifier. The 1 x 1 normalization scheme and two feature representations (coordinate- and angle-based) are presented for the pipeline. In addition, an efficient method to improve robustness against camera angle variations is also introduced by using artificially rotated training data. Experiments on a custom traffic-control gesture dataset demonstrate high accuracy across varying viewing angles and speeds. Finally, an approach to calculate the speed of the arm signal (if necessary) is also presented.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

动态手势识别 OpenPose 循环神经网络 交通控制手势
相关文章