cs.AI updates on arXiv.org 09月30日
量子状态在线学习中的探索与利用权衡
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究使用多臂老虎机在在线学习量子状态属性中的探索与利用权衡。通过分析过去信息,优化选择以减少遗憾,并推导出信息论下界和最优策略。此外,将量子态全息重构成高效学习且最小化测量干扰的方法,并应用于量子推荐系统和从未知状态提取热力学工作。

arXiv:2509.24569v1 Announce Type: cross Abstract: This thesis studies the exploration and exploitation trade-off in online learning of properties of quantum states using multi-armed bandits. Given streaming access to an unknown quantum state, in each round we select an observable from a set of actions to maximize its expectation value. Using past information, we refine actions to minimize regret; the cumulative gap between current reward and the maximum possible. We derive information-theoretic lower bounds and optimal strategies with matching upper bounds, showing regret typically scales as the square root of rounds. As an application, we reframe quantum state tomography to both learn the state efficiently and minimize measurement disturbance. For pure states and continuous actions, we achieve polylogarithmic regret using a sample-optimal algorithm based on a weighted online least squares estimator. The algorithm relies on the optimistic principle and controls the eigenvalues of the design matrix. We also apply our framework to quantum recommender systems and thermodynamic work extraction from unknown states. In this last setting, our results demonstrate an exponential advantage in work dissipation over tomography-based protocols.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子学习 探索与利用 多臂老虎机 量子态全息 量子推荐系统
相关文章