cs.AI updates on arXiv.org 08月11日
Multi-Armed Bandits-Based Optimization of Decision Trees
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出基于多臂老虎机(MAB)的决策树剪枝方法,旨在解决传统剪枝技术可能导致模型泛化能力下降的问题,通过动态剪枝实现决策树优化。

arXiv:2508.05957v1 Announce Type: cross Abstract: Decision trees, without appropriate constraints, can easily become overly complex and prone to overfit, capturing noise rather than generalizable patterns. To resolve this problem,pruning operation is a crucial part in optimizing decision trees, as it not only reduces the complexity of trees but also decreases the probability of generating overfit models. The conventional pruning techniques like Cost-Complexity Pruning (CCP) and Reduced Error Pruning (REP) are mostly based on greedy approaches that focus on immediate gains in performance while pruning nodes of the decision tree. However, this might result in a lower generalization in the long run, compromising the robust ability of the tree model when introduced to unseen data samples, particularly when trained with small and complex datasets. To address this challenge, we are proposing a Multi-Armed Bandits (MAB)-based pruning approach, a reinforcement learning (RL)-based technique, that will dynamically prune the tree to generate an optimal decision tree with better generalization. Our proposed approach assumes the pruning process as an exploration-exploitation problem, where we are utilizing the MAB algorithms to find optimal branch nodes to prune based on feedback from each pruning actions. Experimental evaluation on several benchmark datasets, demonstrated that our proposed approach results in better predictive performance compared to the traditional ones. This suggests the potential of utilizing MAB for a dynamic and probabilistic way of decision tree pruning, in turn optimizing the decision tree-based model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

决策树剪枝 多臂老虎机 泛化能力 模型优化
相关文章