cs.AI updates on arXiv.org 09月30日 12:02
NR SL网络频谱分配DDQN调度器研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种适用于NR SL网络的DDQN调度器,通过多维度环境感知和容量感知的QoS约束,有效降低阻塞率,提升网络边缘资源利用效率。

arXiv:2509.06775v3 Announce Type: cross Abstract: In this paper, we present an agentic double deep Q-network (DDQN) scheduler for licensed/unlicensed band allocation in New Radio (NR) sidelink (SL) networks. Beyond conventional reward-seeking reinforcement learning (RL), the agent perceives and reasons over a multi-dimensional context that jointly captures queueing delay, link quality, coexistence intensity, and switching stability. A capacity-aware, quality of service (QoS)-constrained reward aligns the agent with goal-oriented scheduling rather than static thresholding. Under constrained bandwidth, the proposed design reduces blocking by up to 87.5% versus threshold policies while preserving throughput, highlighting the value of context-driven decisions in coexistence-limited NR SL networks. The proposed scheduler is an embodied agent (E-agent) tailored for task-specific, resource-efficient operation at the network edge.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DDQN NR SL网络 频谱分配 调度器 QoS
相关文章