arXiv:2509.06775v3 Announce Type: cross Abstract: In this paper, we present an agentic double deep Q-network (DDQN) scheduler for licensed/unlicensed band allocation in New Radio (NR) sidelink (SL) networks. Beyond conventional reward-seeking reinforcement learning (RL), the agent perceives and reasons over a multi-dimensional context that jointly captures queueing delay, link quality, coexistence intensity, and switching stability. A capacity-aware, quality of service (QoS)-constrained reward aligns the agent with goal-oriented scheduling rather than static thresholding. Under constrained bandwidth, the proposed design reduces blocking by up to 87.5% versus threshold policies while preserving throughput, highlighting the value of context-driven decisions in coexistence-limited NR SL networks. The proposed scheduler is an embodied agent (E-agent) tailored for task-specific, resource-efficient operation at the network edge.
