Recent Questions - Artificial Intelligence Stack Exchange 09月29日
GPT-J微调指南
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了如何使用小型数据集(约500行)微调GPT-J模型。通过分析`create_finetune_tfrecords.py`脚本输出的2序列数据,文章探讨了`.json`配置文件中的关键超参数设置。建议调整`seq`(序列长度)、`warmup_steps`(预热步数)、`anneal_steps`(衰减步数)和`lr`(学习率)等参数,以优化模型在小数据集上的表现。文章还讨论了梯度累积步数和权重衰减对模型收敛的影响,并建议在微调过程中使用TPU加速训练。

📈 **序列长度与数据量**:对于500行的小数据集,建议将`seq`参数设置在1024-2048之间,以平衡模型训练的稳定性和效率。过长的序列可能导致模型过拟合,而太短则可能无法充分学习数据特征。

🔥 **学习率与预热**:初始学习率`lr`建议设置为1.2e-4,并增加`warmup_steps`至50-100步,以平滑模型训练的起始阶段。衰减步数`anneal_steps`可设为9,确保学习率逐步降低至1.2e-5,避免训练不稳定。

📈 **梯度累积与权重衰减**:设置`gradient_accumulation_steps`为2,可有效提升小数据集的训练效果。权重衰减`weight_decay`建议保持0.1,防止模型在微调过程中过度拟合训练样本。

⚙️ **TPU优化**:将`tpu_size`设为8,并使用`bucket`指定欧洲TPU存储桶,可显著加速训练过程。同时,`val_batches`设为2,确保验证集的充分评估,避免模型偏差。

🔄 **迭代步数控制**:总步数`total_steps`建议设为10,结合`val_every`和`ckpt_every`参数(分别为400000和1),实现高频验证和模型保存,及时发现训练问题。

I have followed this guide as closely as possible: https://github.com/kingoflolz/mesh-transformer-jax

I'm trying to fine-tune GPT-J with a small dataset of ~500 lines:

You are important to me. <|endoftext|>I love spending time with you. <|endoftext|>You make me smile. <|endoftext|>feel so lucky to be your friend. <|endoftext|>You can always talk to me, even if it’s about something that makes you nervous or scared or sad. <|endoftext|>etc...

Using the create_finetune_tfrecords.py script (from the repo mentioned above) outputs a file with 2 in it. I understand that means my data has 2 sequences.

I could really use some advice with the .json config file. What hyperparameters do you recommend for this small dataset?

The best I came up with trying to follow the guide:

{  "layers": 28,  "d_model": 4096,  "n_heads": 16,  "n_vocab": 50400,  "norm": "layernorm",  "pe": "rotary",  "pe_rotary_dims": 64,  "seq": 2048,  "cores_per_replica": 8,  "per_replica_batch": 1,  "gradient_accumulation_steps": 2,  "warmup_steps": 1,  "anneal_steps": 9,  "lr": 1.2e-4,  "end_lr": 1.2e-5,  "weight_decay": 0.1,  "total_steps": 10,  "tpu_size": 8,  "bucket": "chat-app-tpu-bucket-europe",  "model_dir": "finetune_dir",  "train_set": "james_bond_1.train.index",  "val_set": {},  "eval_harness_tasks": [  ],  "val_batches": 2,  "val_every": 400000,  "ckpt_every": 1,  "keep_every": 1,  "name": "GPT3_6B_pile_rotary",  "wandb_project": "mesh-transformer-jax",  "comment": ""}

The problem is that, when I test the fine-tuned model, I get responses that make no sense:

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GPT-J微调 小型数据集 超参数优化 TPU加速 深度学习配置
相关文章