cs.AI updates on arXiv.org 09月12日
MetaLLMiX:深度学习中的零样本超参数优化框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出MetaLLMiX,一个结合元学习、可解释AI和高效LLM推理的零样本超参数优化框架。实验证明,MetaLLMiX在多个医疗影像数据集上表现优异,显著降低计算成本。

arXiv:2509.09387v1 Announce Type: cross Abstract: Effective model and hyperparameter selection remains a major challenge in deep learning, often requiring extensive expertise and computation. While AutoML and large language models (LLMs) promise automation, current LLM-based approaches rely on trial and error and expensive APIs, which provide limited interpretability and generalizability. We propose MetaLLMiX, a zero-shot hyperparameter optimization framework combining meta-learning, explainable AI, and efficient LLM reasoning. By leveraging historical experiment outcomes with SHAP explanations, MetaLLMiX recommends optimal hyperparameters and pretrained models without additional trials. We further employ an LLM-as-judge evaluation to control output format, accuracy, and completeness. Experiments on eight medical imaging datasets using nine open-source lightweight LLMs show that MetaLLMiX achieves competitive or superior performance to traditional HPO methods while drastically reducing computational cost. Our local deployment outperforms prior API-based approaches, achieving optimal results on 5 of 8 tasks, response time reductions of 99.6-99.9%, and the fastest training times on 6 datasets (2.4-15.7x faster), maintaining accuracy within 1-5% of best-performing baselines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

MetaLLMiX 深度学习 超参数优化 元学习 可解释AI
相关文章