cs.AI updates on arXiv.org 09月25日
物理启发:Holographic Transformer在复值信号处理中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于波干涉原理的Holographic Transformer,结合复值信号的特性,在自注意力机制中引入相位影响,提高模型对复值信号处理的性能。

arXiv:2509.19331v1 Announce Type: cross Abstract: Complex-valued signals encode both amplitude and phase, yet most deep models treat attention as real-valued correlation, overlooking interference effects. We introduce the Holographic Transformer, a physics-inspired architecture that incorporates wave interference principles into self-attention. Holographic attention modulates interactions by relative phase and coherently superimposes values, ensuring consistency between amplitude and phase. A dual-headed decoder simultaneously reconstructs the input and predicts task outputs, preventing phase collapse when losses prioritize magnitude over phase. We demonstrate that holographic attention implements a discrete interference operator and maintains phase consistency under linear mixing. Experiments on PolSAR image classification and wireless channel prediction show strong performance, achieving high classification accuracy and F1 scores, low regression error, and increased robustness to phase perturbations. These results highlight that enforcing physical consistency in attention leads to generalizable improvements in complex-valued learning and provides a unified, physics-based framework for coherent signal modeling. The code is available at https://github.com/EonHao/Holographic-Transformers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Holographic Transformer 复值信号 自注意力 波干涉原理
相关文章