cs.AI updates on arXiv.org 09月03日
岩石尺寸分类深度学习模型研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于ConvNeXt架构并增强自注意力和通道注意力机制的深度学习模型CNSCA,用于岩石尺寸分类,通过捕捉长距离空间依赖和强调信息特征通道,提高分类精度和鲁棒性。

arXiv:2509.01704v1 Announce Type: cross Abstract: Accurate classification of rock sizes is a vital component in geotechnical engineering, mining, and resource management, where precise estimation influences operational efficiency and safety. In this paper, we propose an enhanced deep learning model based on the ConvNeXt architecture, augmented with both self-attention and channel attention mechanisms. Building upon the foundation of ConvNext, our proposed model, termed CNSCA, introduces self-attention to capture long-range spatial dependencies and channel attention to emphasize informative feature channels. This hybrid design enables the model to effectively capture both fine-grained local patterns and broader contextual relationships within rock imagery, leading to improved classification accuracy and robustness. We evaluate our model on a rock size classification dataset and compare it against three strong baseline. The results demonstrate that the incorporation of attention mechanisms significantly enhances the models capability for fine-grained classification tasks involving natural textures like rocks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 岩石尺寸分类 ConvNeXt 自注意力 通道注意力
相关文章