cs.AI updates on arXiv.org 09月23日
软约束优化算法改进与性能提升
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种改进的软约束优化算法,通过引入线性约束作为局部成本函数,提高了软约束的建模能力,并显著提升了求解效率和下界精度。

arXiv:2509.17706v1 Announce Type: new Abstract: In Constraint Programming, solving discrete minimization problems with hard and soft constraints can be done either using (i) soft global constraints, (ii) a reformulation into a linear program, or (iii) a reformulation into local cost functions. Approach (i) benefits from a vast catalog of constraints. Each soft constraint propagator communicates with other soft constraints only through the variable domains, resulting in weak lower bounds. Conversely, the approach (ii) provides a global view with strong bounds, but the size of the reformulation can be problematic. We focus on approach (iii) in which soft arc consistency (SAC) algorithms produce bounds of intermediate quality. Recently, the introduction of linear constraints as local cost functions increases their modeling expressiveness. We adapt an existing SAC algorithm to handle linear constraints. We show that our algorithm significantly improves the lower bounds compared to the original algorithm on several benchmarks, reducing solving time in some cases.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

软约束优化 线性约束 算法改进 求解效率 下界精度
相关文章