cs.AI updates on arXiv.org 09月05日
树X算法改进:高效森林树木分割
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出改进的树X算法,结合聚类和区域增长技术,高效分割森林树木。针对地面和无人机激光扫描数据,算法在六个公开数据集上表现优异,比原算法提高效率和精度。

arXiv:2509.03633v1 Announce Type: cross Abstract: Close-range laser scanning provides detailed 3D captures of forest stands but requires efficient software for processing 3D point cloud data and extracting individual trees. Although recent studies have introduced deep learning methods for tree instance segmentation, these approaches require large annotated datasets and substantial computational resources. As a resource-efficient alternative, we present a revised version of the treeX algorithm, an unsupervised method that combines clustering-based stem detection with region growing for crown delineation. While the original treeX algorithm was developed for personal laser scanning (PLS) data, we provide two parameter presets, one for ground-based laser scanning (stationary terrestrial - TLS and PLS), and one for UAV-borne laser scanning (ULS). We evaluated the method on six public datasets (FOR-instance, ForestSemantic, LAUTx, NIBIO MLS, TreeLearn, Wytham Woods) and compared it to six open-source methods (original treeX, treeiso, RayCloudTools, ForAINet, SegmentAnyTree, TreeLearn). Compared to the original treeX algorithm, our revision reduces runtime and improves accuracy, with instance detection F$_1$-score gains of +0.11 to +0.49 for ground-based data. For ULS data, our preset achieves an F$_1$-score of 0.58, whereas the original algorithm fails to segment any correct instances. For TLS and PLS data, our algorithm achieves accuracy similar to recent open-source methods, including deep learning. Given its algorithmic design, we see two main applications for our method: (1) as a resource-efficient alternative to deep learning approaches in scenarios where the data characteristics align with the method design (sufficient stem visibility and point density), and (2) for the semi-automatic generation of labels for deep learning models. To enable broader adoption, we provide an open-source Python implementation in the pointtree package.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

树X算法 森林树木分割 激光扫描 算法改进
相关文章