cs.AI updates on arXiv.org 09月16日
基于快速学习的高效抓取评分器GBPP
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为GBPP的快速学习抓取评分器,通过两阶段课程和点云编码器实现高效抓取。实验证明,GBPP在模拟和真实机器人上均优于基础基准,选择更安全、更易达成的姿态。

arXiv:2509.11594v1 Announce Type: cross Abstract: GBPP is a fast learning based scorer that selects a robot base pose for grasping from a single RGB-D snapshot. The method uses a two stage curriculum: (1) a simple distance-visibility rule auto-labels a large dataset at low cost; and (2) a smaller set of high fidelity simulation trials refines the model to match true grasp outcomes. A PointNet++ style point cloud encoder with an MLP scores dense grids of candidate poses, enabling rapid online selection without full task-and-motion optimization. In simulation and on a real mobile manipulator, GBPP outperforms proximity and geometry only baselines, choosing safer and more reachable stances and degrading gracefully when wrong. The results offer a practical recipe for data efficient, geometry aware base placement: use inexpensive heuristics for coverage, then calibrate with targeted simulation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

快速学习 抓取评分器 GBPP 点云编码器 高效抓取
相关文章