cs.AI updates on arXiv.org 09月05日
强化学习加速航空器路径优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了强化学习与搜索路径规划器的结合,用于加速航空器飞行路径的优化,尤其是在紧急情况下快速重新计算路线至关重要。通过训练强化学习代理预计算基于位置和大气数据的近最优路径,并在运行时使用这些路径约束路径规划求解器,在初始猜测的特定距离内找到解决方案。此方法有效减少了求解器的搜索空间,显著提高了路径优化速度。虽然不能保证全局最优,但实证结果显示,与无约束求解器相比,燃油消耗几乎相同,偏差通常在1%以内。同时,与单独使用传统求解器相比,计算速度可提高高达50%。

arXiv:2509.04100v1 Announce Type: new Abstract: This paper explores the combination of Reinforcement Learning (RL) and search-based path planners to speed up the optimization of flight paths for airliners, where in case of emergency a fast route re-calculation can be crucial. The fundamental idea is to train an RL Agent to pre-compute near-optimal paths based on location and atmospheric data and use those at runtime to constrain the underlying path planning solver and find a solution within a certain distance from the initial guess. The approach effectively reduces the size of the solver's search space, significantly speeding up route optimization. Although global optimality is not guaranteed, empirical results conducted with Airbus aircraft's performance models show that fuel consumption remains nearly identical to that of an unconstrained solver, with deviations typically within 1%. At the same time, computation speed can be improved by up to 50% as compared to using a conventional solver alone.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 路径规划 航空器优化 飞行路径 计算效率
相关文章