cs.AI updates on arXiv.org 09月04日
比较混合多数投票与集成堆叠在肥胖风险预测中的效果
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过比较混合多数投票和集成堆叠两种方法在肥胖风险预测中的应用,验证了集成堆叠在复杂数据分布中的预测能力,同时混合多数投票也是一个可靠的选择。

arXiv:2509.02826v1 Announce Type: cross Abstract: Obesity is a critical global health issue driven by dietary, physiological, and environmental factors, and is strongly associated with chronic diseases such as diabetes, cardiovascular disorders, and cancer. Machine learning has emerged as a promising approach for early obesity risk prediction, yet a comparative evaluation of ensemble techniques -- particularly hybrid majority voting and ensemble stacking -- remains limited. This study aims to compare hybrid majority voting and ensemble stacking methods for obesity risk prediction, identifying which approach delivers higher accuracy and efficiency. The analysis seeks to highlight the complementary strengths of these ensemble techniques in guiding better predictive model selection for healthcare applications. Two datasets were utilized to evaluate three ensemble models: Majority Hard Voting, Weighted Hard Voting, and Stacking (with a Multi-Layer Perceptron as meta-classifier). A pool of nine Machine Learning (ML) algorithms, evaluated across a total of 50 hyperparameter configurations, was analyzed to identify the top three models to serve as base learners for the ensemble methods. Preprocessing steps involved dataset balancing, and outlier detection, and model performance was evaluated using Accuracy and F1-Score. On Dataset-1, weighted hard voting and stacking achieved nearly identical performance (Accuracy: 0.920304, F1: 0.920070), outperforming majority hard voting. On Dataset-2, stacking demonstrated superior results (Accuracy: 0.989837, F1: 0.989825) compared to majority hard voting (Accuracy: 0.981707, F1: 0.981675) and weighted hard voting, which showed the lowest performance. The findings confirm that ensemble stacking provides stronger predictive capability, particularly for complex data distributions, while hybrid majority voting remains a robust alternative.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

肥胖风险预测 混合多数投票 集成堆叠 数据预测 健康医疗
相关文章