cs.AI updates on arXiv.org 08月21日
A Cost-Effective Framework for Predicting Parking Availability Using Geospatial Data and Machine Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于多数据源融合的校园智能停车框架,通过空间连接操作捕捉停车行为和车辆移动模式,并评估了多种预测模型,旨在解决校园停车难题。

arXiv:2508.14125v1 Announce Type: cross Abstract: As urban populations continue to grow, cities face numerous challenges in managing parking and determining occupancy. This issue is particularly pronounced in university campuses, where students need to find vacant parking spots quickly and conveniently during class timings. The limited availability of parking spaces on campuses underscores the necessity of implementing efficient systems to allocate vacant parking spots effectively. We propose a smart framework that integrates multiple data sources, including street maps, mobility, and meteorological data, through a spatial join operation to capture parking behavior and vehicle movement patterns over the span of 3 consecutive days with an hourly duration between 7AM till 3PM. The system will not require any sensing tools to be installed in the street or in the parking area to provide its services since all the data needed will be collected using location services. The framework will use the expected parking entrance and time to specify a suitable parking area. Several forecasting models, namely, Linear Regression, Support Vector Regression (SVR), Random Forest Regression (RFR), and Long Short-Term Memory (LSTM), are evaluated. Hyperparameter tuning was employed using grid search, and model performance is assessed using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Coefficient of Determination (R2). Random Forest Regression achieved the lowest RMSE of 0.142 and highest R2 of 0.582. However, given the time-series nature of the task, an LSTM model may perform better with additional data and longer timesteps.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

校园停车 智能框架 数据融合 预测模型
相关文章