cs.AI updates on arXiv.org 09月03日
智能BSP:实时路径规划与避障框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SmartBSP的先进自监督学习框架,用于复杂环境中的自主机器人实时路径规划和避障。该系统融合了近端策略优化(PPO)、卷积神经网络(CNN)和Actor-Critic架构,对有限的LIDAR输入进行处理,并计算空间决策概率。通过离散化感知场并应用CNN分析生成空间概率分布,优化成本函数以实现路径曲率、终点接近和避障。仿真和实时实验验证了算法的鲁棒性和适应性。

arXiv:2412.02176v2 Announce Type: replace-cross Abstract: This paper introduces SmartBSP, an advanced self-supervised learning framework for real-time path planning and obstacle avoidance in autonomous robotics navigating through complex environments. The proposed system integrates Proximal Policy Optimization (PPO) with Convolutional Neural Networks (CNN) and Actor-Critic architecture to process limited LIDAR inputs and compute spatial decision-making probabilities. The robot's perceptual field is discretized into a grid format, which the CNN analyzes to produce a spatial probability distribution. During the training process a nuanced cost function is minimized that accounts for path curvature, endpoint proximity, and obstacle avoidance. Simulations results in different scenarios validate the algorithm's resilience and adaptability across diverse operational scenarios. Subsequently, Real-time experiments, employing the Robot Operating System (ROS), were carried out to assess the efficacy of the proposed algorithm.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自监督学习 路径规划 避障 机器人 CNN
相关文章