cs.AI updates on arXiv.org 09月03日
SOL算法:高效扩展层次强化学习
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SOL的层次强化学习算法,有效解决大规模训练挑战,通过20亿帧NetHack游戏经验训练,实现高吞吐量,验证算法在MiniHack和Mujoco环境中的通用性。

arXiv:2509.00338v1 Announce Type: cross Abstract: Hierarchical reinforcement learning (RL) has the potential to enable effective decision-making over long timescales. Existing approaches, while promising, have yet to realize the benefits of large-scale training. In this work, we identify and solve several key challenges in scaling hierarchical RL to high-throughput environments. We propose Scalable Option Learning (SOL), a highly scalable hierarchical RL algorithm which achieves a 25x higher throughput compared to existing hierarchical methods. We train our hierarchical agents using 20 billion frames of experience on the complex game of NetHack, significantly surpassing flat agents and demonstrating positive scaling trends. We also validate our algorithm on MiniHack and Mujoco environments, showcasing its general applicability. Our code is open sourced at github.com/facebookresearch/sol.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

层次强化学习 SOL算法 高吞吐量 NetHack Mujoco
相关文章