cs.AI updates on arXiv.org 11月05日 13:30
高吞吐量SNN处理器支持突触延迟仿真
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种支持突触延迟仿真的高吞吐量SNN处理器,采用多核流水线架构,并行计算引擎,实现实时处理与突触延迟相关的计算负载。SoC原型在PYNQ Z2 FPGA平台上开发,使用Spiking Heidelberg Digits (SHD)基准测试低功耗关键词识别任务,达到93.4%的准确率和104样本/秒的平均吞吐量。

arXiv:2511.01158v1 Announce Type: cross Abstract: Synaptic delay has attracted significant attention in neural network dynamics for integrating and processing complex spatiotemporal information. This paper introduces a high-throughput Spiking Neural Network (SNN) processor that supports synaptic delay-based emulation for edge applications. The processor leverages a multicore pipelined architecture with parallel compute engines, capable of real-time processing of the computational load associated with synaptic delays. We develop a SoC prototype of the proposed processor on PYNQ Z2 FPGA platform and evaluate its performance using the Spiking Heidelberg Digits (SHD) benchmark for low-power keyword spotting tasks. The processor achieves 93.4% accuracy in deployment and an average throughput of 104 samples/sec at a typical operating frequency of 125 MHz and 282 mW power consumption.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SNN处理器 突触延迟 高吞吐量 FPGA 关键词识别
相关文章