cs.AI updates on arXiv.org 08月13日
OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一个基于LLM/LVLM的动态可配置自动化管道OSMa-Bench,用于评估开放语义地图(OSM)解决方案。该研究重点评估了在室内不同光照条件下最先进的语义地图算法,并引入了一个新的数据集,通过模拟RGB-D序列和地面真实3D重建,促进了对不同光照条件下地图性能的严格分析。

arXiv:2503.10331v2 Announce Type: replace-cross Abstract: Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Project page is available at https://be2rlab.github.io/OSMa-Bench/.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语义地图 OSM OSMa-Bench SLAM 语义分割
相关文章