cs.AI updates on arXiv.org 07月11日
Towards conservative inference in credal networks using belief functions: the case of credal chains
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文基于Dempster-Shafer理论,探讨了在信度网络中进行信念推理的方法,提出了一种新的框架,用于通过信度网络子类(链)传播不确定性。该方法通过信念和可能性函数有效地生成保守区间,结合了计算速度和鲁棒的不确定性表示。文章比较了基于信念的推理与经典敏感性分析,并通过数值结果展示了该框架在链和信度网络中的实用性和局限性。

arXiv:2507.07619v1 Announce Type: new Abstract: This paper explores belief inference in credal networks using Dempster-Shafer theory. By building on previous work, we propose a novel framework for propagating uncertainty through a subclass of credal networks, namely chains. The proposed approach efficiently yields conservative intervals through belief and plausibility functions, combining computational speed with robust uncertainty representation. Key contributions include formalizing belief-based inference methods and comparing belief-based inference against classical sensitivity analysis. Numerical results highlight the advantages and limitations of applying belief inference within this framework, providing insights into its practical utility for chains and for credal networks in general.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

信念推理 Dempster-Shafer理论 信度网络 不确定性传播 敏感性分析
相关文章