MarkTechPost@AI 2024年08月11日
BiomedGPT: A Versatile Transformer-Based Foundation Model for Biomedical AI with Enhanced Multimodal Capabilities and Performance
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

BiomedGPT 是一款基于 Transformer 的开源生物医学基础模型,它整合了视觉 Transformer 和语言模型的优势,能够处理多种生物医学任务,包括医学图像分类、文本理解、摘要、图像字幕和视觉问答。BiomedGPT 在 25 个实验中取得了 16 个最优结果,在放射学视觉问答、报告生成和摘要方面表现出色,并展现出强大的迁移学习能力和零样本学习能力。

👩‍🔬 BiomedGPT 是一种基于 Transformer 的开源生物医学基础模型,它结合了视觉 Transformer 和语言模型的优势,能够处理多种生物医学任务,包括医学图像分类、文本理解、摘要、图像字幕和视觉问答。BiomedGPT 使用 BERT 风格的编码器和 GPT 风格的解码器,并通过多头注意力和归一化机制来增强模型的收敛性。BiomedGPT 提供三种不同尺寸的模型(BiomedGPT-S、M 和 B),并通过统一的标记词汇表处理文本和图像块。它使用混合的视觉和文本任务进行预训练,并在特定数据集上进行微调。

📊 BiomedGPT 在各种多模态任务中表现出色。在 SLAKE 数据集上,BiomedGPT 在视觉问答方面达到了 86.1% 的准确率,超过了之前的最优结果。在七个 MedMNIST-Raw 数据集中,BiomedGPT 在医学图像分类方面优于之前的模型。在文本理解和摘要方面,BiomedGPT-B 表现优于 BioGPT 和 LLaVA-Med。BiomedGPT 还展示了在生物医学视觉问答和报告生成方面的有效零样本能力,尽管仍有改进空间。

💡 BiomedGPT 的研究表明,通过在统一框架内整合不同的生物医学数据,可以实现跨视觉、语言和多模态领域的强大迁移学习性能。然而,仍存在一些挑战,例如需要高质量的带注释的生物医学数据,以及在扩展到新的数据类型(例如 3D 图像)时可能发生的负迁移。生成文本的评估仍然很困难,新出现的指标(如 F1-RadGraph 分数)有助于评估事实准确性。虽然扩展可以提高性能,但也带来了效率和训练方面的挑战。BiomedGPT 的能力,特别是在零样本场景中的能力,受到当前资源和训练策略的限制,但微调显示出希望。

📈 BiomedGPT 的优势在于其灵活性和可扩展性,可以处理各种生物医学任务。它还具有开源的特点,这使得它对研究人员和开发者更加友好。然而,BiomedGPT 仍然处于发展阶段,需要进一步的改进,包括提高其在处理 3D 图像和复杂医学数据方面的能力,并解决潜在的偏差和公平问题。

Traditional biomedical AI models are often specialized and need more flexibility, making them less effective for real-world applications requiring integrating various data types. Generalist AI models, particularly those based on transformers, offer a versatile solution by handling textual and visual data. These models can streamline complex tasks like radiology interpretation and clinical summarization, overcoming the limitations of narrow, task-specific systems. Unlike many biomedical models, which are cumbersome and closed-source, generalist models can simplify deployment and management by consolidating multiple functions into a single system, improving efficiency and adaptability in medical settings.

Researchers from Lehigh University and other institutions present BiomedGPT, an open-source, lightweight vision–language foundation model designed for various biomedical tasks. BiomedGPT achieved state-of-the-art results in 16 out of 25 experiments while maintaining a computing-friendly model scale. Human evaluations showed robust performance in radiology visual question answering, report generation, and summarization, with low error rates and competitive summarization ability. BiomedGPT, trained with diverse, cross-disciplinary data, demonstrates effective transfer and zero-shot learning capabilities. Despite its potential, further improvements are needed for clinical deployment, particularly in safety, equity, and bias considerations.

BiomedGPT is a transformer-based model optimized for the biomedical field, combining concepts from Vision Transformers and language models. Its encoder-decoder architecture, featuring a BERT-style and GPT-style decoder, supports multimodal tasks with enhanced convergence through multi-head attention and normalization. The model comes in three sizes (BiomedGPT-S, M, and B) and processes inputs via a unified token vocabulary for text and image patches. It undergoes pretraining with a mix of vision and text tasks, fine-tuned on specific datasets. Evaluated using accuracy, F1 score, and ROUGE-L, BiomedGPT’s capabilities include 3D imaging extension and instruction-tuning for zero-shot tasks.

BiomedGPT utilizes masked modeling and supervised learning during its pretraining phase, leveraging 14 diverse datasets to build strong data representations. The model is available in three sizes: small (BiomedGPT-S), medium (BiomedGPT-M), and base (BiomedGPT-B). BiomedGPT was adapted for several biomedical applications during fine-tuning, including medical image classification, text understanding, summarization, image captioning, and visual question answering (VQA). These applications aim to enhance disease diagnostics, clinical documentation, and healthcare chatbot development.

In performance evaluations, BiomedGPT excelled across various multimodal tasks. It achieved 86.1% accuracy in VQA on the SLAKE dataset, surpassing the previous state-of-the-art. BiomedGPT outperformed previous models in medical image classification on seven out of nine MedMNIST-Raw datasets. For text understanding and summarization, BiomedGPT-B demonstrated superior results compared to BioGPT and LLaVA-Med. The model also showed effective zero-shot capabilities for biomedical VQA and report generation, though there is still potential for improvement. Human evaluations of BiomedGPT’s radiology task performance indicated high accuracy and competitive results in radiology report generation and summarization.

The study demonstrates that BiomedGPT achieves strong transfer-learning performance across vision, language, and multimodal domains by integrating diverse biomedical data within a unified framework. However, challenges persist, such as the need for high-quality annotated biomedical data and the risk of negative transfer when expanding to new data types like 3D images. Evaluation of generated text remains difficult, with emerging metrics like the F1-RadGraph score helping to assess factual accuracy. While scaling improves performance, it also introduces efficiency and training challenges. BiomedGPT’s capabilities, particularly in zero-shot scenarios, are limited by current resources and training strategies, though fine-tuning shows promise.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 48k+ ML SubReddit

Find Upcoming AI Webinars here


The post BiomedGPT: A Versatile Transformer-Based Foundation Model for Biomedical AI with Enhanced Multimodal Capabilities and Performance appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

BiomedGPT 生物医学AI Transformer 多模态 迁移学习
相关文章