cs.AI updates on arXiv.org 前天 13:20
RFF-KPKM与IP-RFF-MKPKM:改进的k-means算法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出RFF-KPKM,利用随机傅里叶特征克服了核k-means算法的计算负担和噪声鲁棒性问题,并建立了相关理论保证。同时,提出IP-RFF-MKPKM,通过结合可能性和模糊隶属度,提高了算法的鲁棒性和多核学习能力。

arXiv:2511.10392v1 Announce Type: cross Abstract: Kernel power $k$-means (KPKM) leverages a family of means to mitigate local minima issues in kernel $k$-means. However, KPKM faces two key limitations: (1) the computational burden of the full kernel matrix restricts its use on extensive data, and (2) the lack of authentic centroid-sample assignment learning reduces its noise robustness. To overcome these challenges, we propose RFF-KPKM, introducing the first approximation theory for applying random Fourier features (RFF) to KPKM. RFF-KPKM employs RFF to generate efficient, low-dimensional feature maps, bypassing the need for the whole kernel matrix. Crucially, we are the first to establish strong theoretical guarantees for this combination: (1) an excess risk bound of $\mathcal{O}(\sqrt{k^3/n})$, (2) strong consistency with membership values, and (3) a $(1+\varepsilon)$ relative error bound achievable using the RFF of dimension $\mathrm{poly}(\varepsilon^{-1}\log k)$. Furthermore, to improve robustness and the ability to learn multiple kernels, we propose IP-RFF-MKPKM, an improved possibilistic RFF-based multiple kernel power $k$-means. IP-RFF-MKPKM ensures the scalability of MKPKM via RFF and refines cluster assignments by combining the merits of the possibilistic membership and fuzzy membership. Experiments on large-scale datasets demonstrate the superior efficiency and clustering accuracy of the proposed methods compared to the state-of-the-art alternatives.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

k-means 随机傅里叶特征 多核k-means 鲁棒性
相关文章