cs.AI updates on arXiv.org 前天 13:11
GBDT模型鲁棒水印框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出首个针对GBDT模型的鲁棒水印框架,通过就地微调嵌入不可察觉且耐久的水印,并设计了四种嵌入策略以最小化对模型准确性的影响,实验表明该方法在多种数据集上实现了高嵌入率、低精度损失和抗后部署微调的强鲁棒性。

arXiv:2511.09822v1 Announce Type: new Abstract: Gradient Boosting Decision Trees (GBDTs) are widely used in industry and academia for their high accuracy and efficiency, particularly on structured data. However, watermarking GBDT models remains underexplored compared to neural networks. In this work, we present the first robust watermarking framework tailored to GBDT models, utilizing in-place fine-tuning to embed imperceptible and resilient watermarks. We propose four embedding strategies, each designed to minimize impact on model accuracy while ensuring watermark robustness. Through experiments across diverse datasets, we demonstrate that our methods achieve high watermark embedding rates, low accuracy degradation, and strong resistance to post-deployment fine-tuning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GBDT模型 水印技术 鲁棒性
相关文章