ByteByteGo 前天 00:33
系统设计的可扩展性:应对增长的策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

系统设计中的可扩展性是指系统应对增长的能力,包括处理更多用户、数据和流量而不降低性能。它允许通过增加资源来提升容量和吞吐量,同时控制性能、可靠性和成本。可扩展性体现在垂直扩展(升级单机性能)和水平扩展(增加多机分担负载)两种主要方式,其中水平扩展是现代大型系统的基础。然而,可扩展性不仅依赖硬件,更关乎软件设计。此外,关注p95/p99延迟和错误预算等指标,能更真实地评估系统在负载下的表现,并在可靠性和创新之间做出权衡。

💡 **可扩展性的核心在于应对增长**:系统设计中的可扩展性旨在确保系统能够平稳地处理用户量、数据量和流量的增加。这意味着系统可以随着需求增长而扩展其容量和吞吐量,同时保持良好的性能、可靠性,并控制成本。一个良好的可扩展性设计能够让系统在面临巨大压力时依然稳定运行,而不是在用户激增时崩溃。

⬆️ **垂直扩展与水平扩展**:系统可通过两种主要方式实现扩展。垂直扩展(Scale Up)是通过增强单台服务器的CPU、内存或存储来提升其能力,但这存在物理和成本上的上限。水平扩展(Scale Out)则是通过增加多台服务器共同分担工作负载,这种方式更为灵活,是构建如Google、Netflix等大型系统的关键。

💻 **软件设计的重要性**:可扩展性并非仅依靠增加硬件。软件和基础设施的设计同样至关重要。即使拥有大量服务器,如果应用程序编写不佳或系统耦合度过高,也无法有效扩展。因此,优化代码和解耦系统是实现真正可扩展性的前提。

📊 **关注关键性能指标和容错**:评估可扩展性时,不能仅看平均值。p95和p99延迟等指标能反映最慢请求的表现,这直接影响用户体验,尤其是在高峰时段。同时,错误预算(Error Budget)概念有助于在可靠性和快速迭代创新之间找到平衡,它定义了可接受的故障时间,帮助团队做出务实的决策。

✨ **无状态服务是基石**:在许多可扩展的系统中,无状态服务扮演着关键角色。这意味着服务本身不存储任何客户端会话信息。当请求到达时,任何一个可用的服务器都可以处理它,这极大地简化了负载均衡和横向扩展的实现,提高了系统的弹性和可用性。

When we talk about scalability in system design, we’re talking about how well a system can handle growth.

A scalable system can serve more users, process more data, and handle higher traffic without slowing down or breaking. It means you can increase the system’s capacity and throughput by adding resources (like servers, databases, or storage) while keeping performance, reliability, and cost under control. Think of scalability as a measure of how gracefully a system grows. A small application running on one server might work fine for a few thousand users, but if a million users arrive tomorrow, it could start to fail under pressure.

A scalable design allows you to add more servers or split workloads efficiently so that the system continues to perform well, even as demand increases. There are two main ways to scale a system: vertical scaling and horizontal scaling. Here’s what they mean:

However, scalability is not just about adding hardware. It’s about designing software and infrastructure that can make effective use of that hardware. Poorly written applications or tightly coupled systems may not scale even if you double or triple the number of servers.

When evaluating scalability, we also need to look beyond simple averages. Metrics like p95 and p99 latency show how the slowest 5% or 1% of requests perform. These tail latencies are what users actually feel during peak times, and they reveal where the system truly struggles under load.

Similarly, error budgets help teams balance reliability and innovation. They define how much failure is acceptable within a given time period. For example, a 99.9% uptime target still allows about 43 minutes of downtime per month. Understanding these numbers helps teams make practical trade-offs instead of chasing perfection at the cost of progress.

In this article, we will look at the top scalability patterns and their pros and cons.

Stateless Services

Read more

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

可扩展性 系统设计 垂直扩展 水平扩展 无状态服务 Scalability System Design Vertical Scaling Horizontal Scaling Stateless Services
相关文章